ため池堤体・フィルダムの非排水繰返し載荷による強度低下を考慮した ニューマーク法による地震時残留変形評価法

Evaluation of seismic dam displacement by Newmark method taking into account soil strength reduction due to undrained cyclic loading

Duttine Antoine (デュッティン・アントワン) (株)複合技術研究所 第一設計部課長

> 矢崎 澄雄(やざき すみお) (株)複合技術研究所 第一設計部長

1. はじめに

2011 年の東日本大震災では、多数のため池堤体が被 災し崩壊した例もあった。この主原因は、締固めが悪く 初期非排水強度が小さい上に砂質で地震時に非排水状態 で繰返し載荷を受けて強度が厳しく低下した(極端な場 合は液状化に近い状態になった)ためである¹⁾。ため池 堤体のこのような震災は、古くから多数ある 2)。ため池 は数が非常に多く、この現象を考慮できる実務的な安定 解析法が必要とされている。一定程度締固めた盛土構造 物の崩壊では明確なすべり面が形成されることから、す べり面を前提とした円弧すべり極限釣合い安定解析とそ の解析に基づき残留ひずみを算定する Newmark 法には 一定の合理性がある。非線形弾塑性 FEM による有効応 力解析は遥かに高度であるが、すべり破壊の解析には厚 さが粒径に比例するせん断層の発生・発達、全体的非排 水状態の下でのせん断層への間隙水の局所的な移動など 複雑な現象を的確に考慮する必要がある。現在の段階で は、せん断層の形成を伴わない残留変形は非排水繰返し 載荷による剛性低下を考慮した FEM で求め 3,9)、残留す べり変形は円弧すべり安定解析に基づく Newmark 法で 別途計算し、両者を足し合わせる近似法が実務的であ る。

本報では、非排水繰返し載荷による強度低下を考慮で きるように修正した Newmark 法を紹介し、ため池堤体 やフィルダム等の盛土構造物の地震時安定性の確保には 締固めが非常に重要であることを示す。

2. 非排水条件と繰返し載荷の影響

図-1 は、等方圧密した飽和豊浦砂の中空供試体のね じりせん断試験実験⁴⁾による(A)排水単調載荷強度、(B) 非排水単調載荷強度、(C)非排水繰返し載荷強度と相対密 度 Drの関係である。(C)を15%と比較的大きなせん断ひ ずみ γ で定義したのは、液状化は小さな応力で非常に大 きなひずみが生じる現象であり、大きな γ で定義しない と(C)に対する Drの影響を的確に捉えられないからであ る。図-1 を見ると、Drの増加による(すなわち締固め 龍岡 文夫(たつおか ふみお) 東京理科大学理工学部土木工学科 教授

毛利 栄征(もうり よしゆき) 茨城大学農業部地域環境科学科 教授

による) A)排水強度の増加は大きくはなく、例えば D_F 70%→90%では10%しか増加率しない。一方、D_rの増 加による(B)非排水強度の増加は著しく、例えば D_F 40%→60%で3倍以上増加する。また、(C)非排水繰返し 載荷強度は、D_F 70%→90%で3倍以上増加して(A)排水 強度を超える。さらに、以下で示すように非排水繰返し を受けた後の非排水強度に対する D_rの影響も非常に大 きい。すなわち飽和非排水条件の盛土構造物の地震時安 定性では、以下示すように排水強度ではなく、地震時に 非排水繰返し載荷の影響を受けて経時的に低下してゆく 非排水せん断強度に基づく必要がある。

図-1 等方圧密豊浦砂のねじりせん断試験による強度4)

3. 全応力方法と有効応力方法

飽和軟弱粘性土の非排水せん断強度 w の推定法として、 従来次の二つの方法が用いられてきた。

<u>有効応力法</u>: wを載荷条件に依存しない強度パラメータ c'と\$'を用いて wが発揮される時のすべり面に作用する 有効直応力 ofで表現する(式 1)。

 $τ_f = c' + \sigma_f \cdot tan \phi' = c' + (\sigma_c' + \Delta \sigma - \Delta u_f) \cdot tan \phi' \cdots (1)$ $σ_c' はせん断開始時の有効直応力、 Δ σ は載荷による直応$ $力 (全応力) の増分、 Δu_f は τ_f 発揮時の過剰間隙水圧で$ ある。この方法は、破壊時有効応力法とも呼べる。 <u>
 全応力法</u>: τ_f を圧密時の有効直応力 σ_c'で表現する(式 2)。

 $\tau_{\rm f} = c_{\rm CU} + \sigma_{\rm c}' \cdot \tan \phi_{\rm CU}$ (2)

ccuと¢cuは、圧密と載荷の条件に支配される見掛けの物 性値である。圧密時有効応力法とも呼べる。

有効応力法の方が土質力学的にはより本質的であるが、 実際にはΔufは載荷の条件に支配されて正確な推定は困 難であるため、実務では全応力法を用いることが多い。

上記に平行して、非排水繰返し載荷過程での非排水せん強度 tr も、次の二つの方法で表現できる。

<u>有効応力法</u>: $t_f \in c' \geq \phi'$ を用いて次式で表現する。

 $\tau_{\rm f} = c' + (\sigma_{\rm c}' + \Delta \sigma - \Delta u_{\rm d}) \cdot \tan \phi'$ (3) Δudは、本来は Tf 発揮時の過剰間隙水圧である。しかし、 通常は非排水繰返し三軸試験で得られる Δu~時間関係の 上限包絡線から得られる Δu の上限値(すなわち、初期 液状化時の Δu)を用いている。また、Δσ は地震荷重に よる直応力の増分であるがゼロとすることが多い。この 方法は、Δu 法と呼ばれている。この Δu 法は、緩い飽和 土では一定程度有効であるが、締固めの効果を著しく過 小評価する⁵⁾。まず、載荷開始時は Δud=0 なので(3)式に よる Tf は排水強度となるが実際は非排水強度であり、こ の非非排水強度は密な土ほどダイレイタンシーのために 排水強度よりも大きくなる。また、密な土ほど Tf 発揮時 の Δuf は初期液状化時の作用せん断応力がゼロに近い状 態で測定される Δu よりも小さくなり負にもなる (Cyclic mobility)。従って、(3)式で Δud を初期液状化時の Δu と すると実際のtfを大幅に過小評価することになる。 全応力法:非排水繰返し載荷中に低下してゆく非排水せ ん断強度 τf を、Δud は参照しないで式(4)で表現する。

 $\tau_{f} = c_{u} + \sigma_{c}$ ' $\tan \phi_{u}$ (4) $c_{u} \geq \phi_{u}$ は見掛けの物性値であり、非排水繰返し載荷で生 じたひずみに応じて低下してゆく。 τ_{f} は圧密時有効直応 力 σ_{c} 'の関数なので、これも圧密時有効応力法とも呼べる。 筆者らは、非排水せん断強度 τ_{f} を全応力法(式 4)によ って締固め効果を考慮できるように定式化し、それに基 づいてすべり変位を算定する Newmark-D 法を開発した。

4. Newmark-D 法

従来の Newmark 法(Newmark-O 法と呼ぶ)では、一 定の排水せん断強度(通常は残留強度)を用いる。 Newmark-D 法では、以下のフロー(図-2)に従って非排 水繰返し載荷による非排水強度の低下を考慮する^{5,6}。

<u>Step 1 初期設定</u>: 堤体・地盤系の 2 次元断面モデル、 地層、土質物性、水位線、入力地震波等を設定する。

Step 2 FEM 動的応答解析: 初期自重解析と剛性と減衰 のひずみ依存性を考慮した 2 次元等価線形化(又は非線 形直接積分)FEM による地震応答解析を行い、堤体内部 の初期有効応力状態とともに応答加速度の時刻歴、応力 の時刻歴を求める。求めた地震時作用せん断応力は、降 伏時には実際の土のせん断強度 τf を超えることになる。

<u>Step3 初期臨界円弧すべり面の探索</u>: 各スライス底面 でのせん断強度 t_fを式(5)で求め、極限釣合い法(Fellenius 法)によって水平震度 khが一様一定な場合で最も低い降 伏震度(ky0)0を与える臨界円弧すべり面 Coを探索する。 $\tau_{\rm f} = c + \sigma' \cdot \tan \phi = F_{\rm s} \cdot s_{\rm mi}/L_{\rm i}$ (5) Fsは全体すべり安全率、Smiは各スライス底面での作用せん断力、Liは各スライス底面長である。cと ϕ は、排水条件では $\tau_{\rm f}$ を式(1)で表した場合のc'と ϕ 'であり、飽和非排水条件ではその時々の $\tau_{\rm f}$ を式(4)表現した場合の粘着力係数cuと摩擦角 $\phi_{\rm u}$ であり非排水繰返し載荷によって低下してゆく。 σ' はそれぞれの試行すべり面に沿った有効直応力であり、排水条件では $k_{\rm h}$ の影響を受けるが、飽和非排水条件では $k_{\rm h}$ の影響を受けず初期値 $\sigma_{\rm c}$ 'である。

図-3 累積損傷度理論における損傷の定義

Step 4 臨界すべり面でのせん断強度低下過程の計算:

Step2 で得た結果から、臨界円 C₀の各分割スライス底面 での作用せん断応力 τ_w の時刻歴を求める。それに基づい て飽和非排水条件での τ_w の繰返し載荷によって低下し てゆく τ_f の時刻歴(即ち c_u , ϕ_u の時刻歴)を求める。そ のため、各スライスの τ_w の時刻歴をパルス集合に置き変 え、そのパルス集合によって生じるせん断ひずみ両振幅 DA を累積損傷度理論によって求める。つまり、不規則 載荷中の任意のパルス i に対して、パルス i と同一の応 力両振幅比(2SR= $\Delta \tau/\sigma'_0$)を持つ一様対称規則荷重による 非排水繰返し載荷が N_i回加わることによってある値の DA が発生したとする。その場合、そのパルス i による損 傷 D_i を(1/N_i)とする。N_i は、一連の非排水繰返し実験で 求めた「その値の DA が生じる SR~log(N_c)関係」に SR_i を代入して求める (図-3)。N_iは、SR が小さいほど DA が大きいほど大きくなる。パルス集合 1~i によって生じ た全損傷 D= Σ D_i= Σ (1/N_i)が 1.0 になれば、そのパルス集合 によってひずみ DA が生じると考える。このようにして、 各スライス底面で生じた DA の時刻歴を求める。

あるパルスnでの非排水強度 τ_r は、「パルス集合 1~(n-1) によって生じた DA と同じ値の DA が生じた一様規則荷 重での非排水繰返し載荷の直後に行った非排水単調載荷 試験」で発揮される τ_r に等しいとする。このようにして 求めた τ_r と DA の関係を定式化しておく ^{7,8}。それぞれの DA の値をこの関係に代入して τ_f の値を求めて、各スラ イス底面での τ_f の(すなわち c_u , ϕ_u の)時刻歴を求める。

図-4 Newmark 法での荷重とすべり変位

<u>Step 5 すべり変位の計算 (図-4)</u>: Step2 で得られた 応答加速度から初期臨界円 C₀の土塊すべり内の平均応 答加速度を求めて、以下の解析に用いる。臨界円 C₀に沿 って滑動モーメント M_d (式 6) が抵抗モーメント M_r (式 7)を超えるパルスにおいて、式 (8) によってすべり回転 加速度 $\ddot{\theta}$ の時刻歴を求める。この $\ddot{\theta}$ を二回時間積分する ことによって、そのパルスによって生じるすべり変位量 $\delta = R \cdot \theta$ の増分 $\Delta \delta$ の時刻歴を求める。

<u>Step 6 残留すべり最大の臨界円の探索</u>: Step4~5 を繰 り返して、残留すべりが最大となる臨界円を探索する。 参考として最初にすべりが生じる円弧も求めておくの。

図-5 D_c=85%の場合の詳細Newmark-O、D法の比較例

5. 解析例

次の三つの解析法の結果を比較する。

1) 一定の排水強度を用いるが応答解析の結果を用いた Newmark-O法(以下、詳細O法)

 2)非排水強度 τ_f を Δu 法 (式 3)で求めた Newmark 法
 3)非排水繰返し載荷によって低下する非排水強度(式 4) を用いた Newmark-D 法(詳細 D 法)

2)と3)の方法は τ_{f} を求める方法以外は同一である。 Δu 法 に用いた Δu_{d} は、図-8 に例示する非排水繰返し三軸試験 の Δu -DA 関係の上限包絡関係に Step 4 で求めた DA を 代入して求めた Δu である。ここでは、実際の代表的な ため池堤体材料を標準プロクターによる D_c=85,90,95% に締固めて行った各種強度試験の結果(表-1)^{7,8)}に基 づいて締固め度 D_cの影響を検討した。

地層		単位体積重量 (kN/m ³)		排水 せん断強度		非排水 せん断強度	
No.名称	Dc	湿潤 γ _t	飽和 γ _{sat}	<i>c</i> ' (kPa)	∮' (度)	$c_{u0}(kPa)$	φ _{u0} (度)
① コア	95%	18.5	19.6	15	22	30	20
②③ランダム		18.0	19.6	1	50	45	20
① コア	90%	18.0	19.1	12	19	18	13
②③ランダム		17.0	19.1	7	40	15	20
① コア	85%	16.5	18.5	10	15	15	10
2③ランダム		16.0	18.5	5	35	4	30
④ 地盤 N20		17.0	17.4	37	31.5	37	31.5

表-1 各強度試験に基づいて設定した解析に用いる土質特性

図-7 応答解析用モデルおよび基盤表面波

解析対象を図-6に、図-7に動的応答解析モデルおよび使用した南海トラフ基盤表面波を示す。地盤底面は粘性境界、側面はエネルギー伝達境界とした。強度モデルの影響を直接比較するため、 $D_c = 95\%$ での非排水繰返し三軸試験によって求めた剛性と減衰率のひずみ依存性を全ての解析で用いた。Newmark -D 法で用いた非排水繰返し載荷特性を図-9aに示す。実験結果に基づき、 D_c の違いによらない強度低下特性(図-9b)を用いた。

堤体天端での最大応答加速度は 376.6gal であり、堤体

底面に対して 1.5 倍程度増幅している (図-10)。すべり 変位計算で用いる応答加速度およびせん断応力 τ_w の時 刻歴を抽出し、 τ_w の時刻歴からひずみ DA を求めて、 Δ u 法で用いる Δ ud の値と Newmark-D 法で用いる堤体材 料の低下して行くせん断強度 τ_f の時刻歴を算出した。

図-8 Δu法に用いたΔu-DA関係(D_c=95%の場合)^{7,8)}

図-9 Newmark-D法で用いた: a)異なるD。での異なるDAに
 対するSR~N。関係: b)強度低下率関係(全ケース共通)

図-10 地震応答解析による最大応答加速度分布

図-11 に解析結果を示す。Newmark-D 法では、締固め 度 D_c が低下すると降伏震度の初期値が低下することに 加えて地震中の降伏震度の低下率も大きくなるため、最 終残留変位は非常に大きくなる。逆に、 D_c が増加すると 堤体の安定性が著しく向上する。他の二つの方法では、 すべり変位に対する D_c の影響は Newmark-D 法と比較す ると非常に小さくなる。すなわち、Newmark-詳細 O 法で は緩詰めでの変位が著しく小さくなり、揺詰めの場合の 滑り崩壊の危険を過小評価する可能性が高くなる。Δu 法では密詰めでの変位が著しく大きくなり、締固めの効 果を著しく過小評価する可能性が高くなる。

図-11 異なる解析法による最終残留すべり量~D。関係の比較

5. まとめ

ため池堤体・フィルダムのみならず河川堤防、道路・ 鉄道・宅造盛土の飽和領域は、締固めが悪いと初期非排 水強度が低くなる上に非排水繰返し載荷による強度低 下率が大きくなる。この二重の効果によって、地震中に 強度が著しく低下して大きなすべり変位を生じる可能 性が高くなる。締固めが良いと、逆に初期非排水強度が 高くなる上に非排水繰返し載荷による強度低下率が小 さくなり、高い強度が維持されて大きなすべり変位は生 じない。Newmark-D 法は飽和非排水状態でのすべり変形 の近似的解析法であるが、非排水せん断強度を累積損傷 度理論に基づいて全応力法で定式化することによって 締固めの効果を考慮できる。

参考文献

- 1) 地震時における地盤災害の課題と対策—2011年東日本大震災の教訓と提言—(第一次、第二次)、2011年6月、2012年6月、 公益社団法人 地盤工学会平成23年度 学会提言の検証と評価 に関する委員会、2011,2012.
- 3) 秋葉満壽次・仙波秀男:秋田県男鹿地震と溜池被害、農業土木 研究、農業土木学会、13(1), 31-59, 1941.
- Yasuda, S.: Evaluation of liquefaction-induced deformation of structures, *Recent Advances in Earthquake Geotechnical Engineering and Microzonation*, Kluwer Academic Publishes, Ch.6: 199-230, 2004.
- Tatsuoka, F., Muramatsu, M. and Sasaki, T.: Cyclic undrained stress-strain behavior of dense sands by torsional simple shear test", *Soils and Foundations*, 22:2, 55-70, 1982.
- 5) 龍岡文夫・Duttine,A.・矢崎澄雄・毛利栄征:非排水繰返し載荷による強度低下およびひずみ軟化を考慮したニューマーク法による 地震時斜面残留変位推定,地盤工学会委員会主催シンポジウム No.180一東日本大震災を乗り越えて一発表論文集,394-403,2014.
- 6) Duttine, A.・龍岡文夫・矢崎澄雄・毛利栄征:非排水繰返し載荷による強度低下を考慮したニューマーク法解析の諸仮定の検討、 北九州、第49回地盤工学研究発表会,北九州,1397-1398,2014.
- 7) 上野和広・毛利栄征・田中忠次・龍岡文夫:ため池堤体土の非排 水繰返し載荷に伴う強度低下特性、第48回地盤工学研究発表会、 富山,1201-1202,2013.
- 8) 上野和広・毛利栄征・田中忠次・龍岡文夫: 飽和度の非排水繰返し載荷による強度低下率に対する締固め度の影響、第49回地盤工学研究発表会、北九州, 1395-1396, 2014.
- 9) 上野和広・田中忠次・毛利栄征・龍岡文夫:非排水繰返し荷重による飽和土の強度低下の評価法、本地盤工学会誌3月、2015.