ニューマーク法による地震時残留すべり解析に適用する非排水繰返しによる 強度低下モデルについて

斜面安定、耐震設計、ニューマーク法

複合技術研究所 正会員 DUTTINE, Antoine 東京理科大学土木工学科 国際会員 龍岡文夫 複合技術研究所 正会員 矢崎澄雄 茨城大学農業部地域環境科学科 正会員 毛利栄征

1. はじめに

2011 年東日本大震災では、ため池堤体が多数被災し崩壊例もあった。この主 原因は、堤体材料の締固めが悪く初期非排水強度が小さい上に、砂質であるた め非排水繰返し載荷を受けて強度が著しく低下した(極端な場合は液状化に近 い状態になった)ためである」。ため池の数は非常に多く、堤体のこのような被 害は古くから多数ある。一方で、良く締固めた場合はこのような被害を防げ る。これらの現象を考慮できる実務的な安定解析法が必要とされている。-・定 程度締固めた盛土構造物の崩壊では明確なすべり面が形成されることから、す べり面の形成を前提とした円弧すべり極限釣合い安定解析とそれに基づき残留 変位を算定する Newmark 法には一定の合理性がある。本研究では、ため池堤体 やフィルダム等の盛土構造物の地震時安定性を評価において非排水繰返し載荷 による強度低下と締固めの効果を適切に考慮できるように Newmark 法を修正し た。本報文では、これらの要因の非常性を示す。

2. 全応力方法と有効応力方法による強度低下モデル

飽和軟弱粘性土の非排水せん断強度 Tf の推定法として、いわゆる有効応力方 法と全応力方法がある。これに平行して、非排水繰返し載荷過程での非排水せ ん強度 Tfも、次の二つの方法で表現できる。

有効応力法: rfを有効応力で定義した粘着力 c'と摩擦角 o'を用いて表現する。 $\tau_{\rm f} = c' + (\sigma_{\rm c}' + \Delta \sigma - \Delta u_{\rm d}) \cdot \tan \phi'$ (1)

Tf は圧密時有効直応力 σc'の関数なので、圧密時有効応力法とも呼べる。Δud は、 本来は Tf が発揮される時の過剰間隙水圧である。しかし、通常は非排水繰返し 三軸試験で得られる Δu~時間関係の上限包絡線から得られる Δu の上限値(すな わち、初期液状化時の Δu)を用いている。また、Δσ は地震荷重による直応力の 増分であるがゼロとすることが多い。この方法は、Δu 法と呼ばれている。Δu 法 は、緩い飽和土では一定程度有効であるが、締固めの効果を著しく過小評価す る²⁾。まず、載荷開始時は $\Delta u_d = 0$ なので式 1 による τ_f は排水強度となるが、実 際は非排水強度であり密な飽和土ほどダイレイタンシー効果により排水強度よ りも大きくなる。また、密な土ほど τf 発揮時の Δur は、初期液状化時の作用せん

断応力がゼロに近い状態で測定される Δu よりも小さく なり負にもなる(Cyclic mobility)。従って、初期液状 化時の Δu を式1 での Δu_d として用いる、実際の τ_f を大 幅に過小評価する。

全応力法:非排水繰返し載荷中に低下してゆく非排水 せん断強度 τfを、Δudを参照せず、式2で求める。

 $\tau_{\rm f} = c_{\rm u} + \sigma_{\rm c} \cdot \tan \phi_{\rm u}$

cuとbuは、非排水繰返し載荷で生じるひずみに応じて低 下する見掛けの物性値であり、実験によって求める。

以下、非排水せん断強度 tf を有効応力方法(式1)及 び全応力法(式2)によって求めた上でNewmark法に基 づいてすべり変位を算定し、締固め効果を比較する。

3. 解析手法と解析結果

図1に、全応力法(式2)に基づく修正 Newmark 法 (Newmark-D 法^{2,3)}) による解析フローを示す。

<u>Step 1 - FEM 動的応答解析: 2 次元 FEM で初期静的有効</u> 応力解析、剛性と減衰のひずみ依存性を考慮した等価 線形化(又は非線形直接積分法)による動的応答解析 の順で行い、初期有効応力状態、応答加速度の時刻 歴、せん断応力の時刻歴を求める。

Step2 - 初期臨界円弧すべり面の探索: 各スライス底面

図-1 Newmark-D 法の解析フロー

図-2 解析対象

	表-1	各強度試験に基づい	て設定した	:解析に用い	る土質特性
--	-----	-----------	-------	--------	-------

地層		単位体積重量		排水		非排水	
		(kN/m ³)		せん断強度		せん断強度	
No.名称	Dc	湿潤 γ_t	飽和 γ _{sat}	<i>c</i> ' (kPa)	∮ '(度)	cu0(kPa)	∮ u0 (度)
① コア	95%	18.5	19.6	15	22	30	20
②③ランダム		18.0	19.6	1	50	45	20
① コア	90%	18.0	19.1	12	19	18	13
②③ランダム		17.0	19.1	7	40	15	20
① コア	85%	16.5	18.5	10	15	15	10
23ランダム		16.0	18.5	5	35	4	30
④ 地盤 N20		17.0	17.4	37	31.5	37	31.5

でのせん断強度 τ f を式 2 で求め、極限釣合い法(Fellenius 法) によって一様一定水平震度 kh が作用した場合における臨 界円弧すべり面 Coを探索し、Coに対する最も低い降伏開始震度(kyo)oを求める。

(2)

Step 3 - 臨界すべり面でのせん断強度低下過程の計算: 臨界円 Coの各分割スライス底面での作用せん断応力 twの時刻歴

A.Duttine (Integrated Geotechnology Institute, IGI); F. Tatsuoka (Tokyo University of Science); S. Yazaki (IGS); and Y.Mohri (National Institute for Rural Engineering)

[&]quot;On the models of strength-reduction by undrained cyclic loading used in residual sliding displacement analysis by the Newmark method"

を Step 1 の FEM 応答解析から求め、非排水条件での τ_w の繰返し載荷 によって低下してゆく τ_f の時刻歴(即ち c_u , ϕ_u の時刻歴)を求める。 各スライスの τ_w の時刻歴から生じるひずみ振幅 DA の時刻歴を累積損 傷度理論によって求めて、それを非排水繰返し載荷の直後に行った非 排水単調載荷試験より強度低下率とひずみ DA の関係に代入して各スラ イスの τ_f の時刻歴を算定する³⁾。

<u>Step 4- すべり変位の計算に用いる応答加速度の計算</u>: Step 1 の FEM 動 的解析によって求めた応答加速度に基づいて、初期臨界円 C₀ に沿って 土塊すべり内での節点の応答加速度を平均して求める。

Step 5 - すべり変位の計算:初期臨界円 C₀に沿って、Newmark 法の理論に基づいて回転加速度 $\ddot{\theta}$ の時刻歴を求め、これを二回時間積分してそのパルスによって生じるすべり変位量 $\delta = R \cdot \theta$ の増分 $\Delta \delta$ を求める。 Step 6 - すべり変位が最大となる臨界円の探索:上記の Step3~5 を繰り返して、すべり変位が最大となる臨界円を探索する。

有効応力方法に基づく Newmark 法は、 τ_f を求める方法以外は上記と 同一である。 Δu 法に用いる Δu_d (式 1) は、図-5 に示す非排水繰返し三 軸試験例での Δu —DA 関係の上限包絡関係に Step 3 で求めた DA を代入 して求めた Δu である。実際の代表的なため池堤体材料を標準プロクタ ーで締固め度 D_e =85,90,95%に締固めた場合での D_e の影響を検討した。 表-1 には、土質試験によるそれぞれの D_e での各種物性値を示す。

解析対象を図-2 に、図-3 に等価線形応答解析モデルおよび使用した南海トラフ基盤表面波を示す。強度モデルの影響を直接比較するため、D_c=95%での非排水繰返し三軸試験によって求めた剛性と減衰率の

ひずみ依存性を全ての解 析で用いた。実験結果に 基づいて決定した強度低 下特性を図-6に示す。

地震応答解析より堤体 天端での最大応答加速度 は 376.6gal であり、堤体

底面に対して 1.5 倍程度増幅している (図-7)。応答加速度およびせん 断応力 τ_w の時刻歴を抽出してひずみ DA の時刻歴を求め、DA から Δu 法で用いる Δu_d の値と Newmark-D 法で用いるせん断強度 τ_f の時刻歴を 算出した。解析結果を図-8 に示す。この図に、震動中に一定の値を保 つ排水強度を用いる従来の Newmark 法 (O 法)の結果も示す。

Newmark-D法(詳細D法)では、締固め度D。が低下すると初期非排水強度が低下して降伏震度の初期値が低下することに加えて、地震中のDAに増加によって降伏震度の低下率が大きくなるため、残留変位は非常に大きくなる。逆に、D。が増加すると堤体の安定性が著しく向上する。従って、締固めの効果を適切に評価することが可能になる。

一方、他の二つの方法では、すべり変位に対する D_eの影響は Newmark-D 法と比較すると非常に小さくなる。すなわち、Newmark-詳 細 O 法では緩詰めでの変位が著しく小さくなり、緩詰めの場合の滑り 崩壊の危険を過小評価している。また、Δu 法では密詰めでの変位が著 しく大きくなり、締固めの効果を著しく過小評価している。

4. まとめ

締固めが悪いと初期非排水強度が低くなる上に非排水繰返し載荷に よる強度低下率が大きくなる。この二重の効果によって、地震中に強 度が著しく低下して大きなすべり変位を生じる可能性が高くなる。締 固めが良いと、逆に強度が高い値に維持されて大きなすべり変位は生 じない。Newmark-D 法は飽和非排水状態でのすべり変形の近似的解析 法であるが、非排水せん断強度を累積損傷度理論に基づいて全応力法 で定式化することによって、締固めの効果を考慮できる。

参考文献: 1) 地震時における地盤災害の課題と対策—2011 年東日本大震災の教 訓と提言,地盤工学会 H23 学会提言の検証と評価に関する委員会、2011, 2012. 2) 龍岡文夫・Duttine,A.・矢崎澄雄・毛利栄征: 非排水繰返し載荷による強度低下 およびひずみ軟化を考慮したニューマーク法による地震時斜面残留変位推定,地 盤工学会委員会主催シンポジウム No.180, 394-403, 2014. 3) Duttine, A.・龍岡文 夫・矢崎澄雄・毛利栄征: 非排水繰返し載荷による強度低下を考慮したニューマ ーク法解析の諸仮定の検討、北九州、第49回地盤工学研究発表会,北九州, 1397-1398, 2014. 4) 上野和広・毛利栄征・田中忠次・龍岡文夫: 飽和度の非排水繰返 し載荷による強度低下率に対する締固め度の影響、第 49 回地盤工学研究発表 会、北九州, 1395-1396, 2014.

